Search results
Results from the WOW.Com Content Network
Automata theory is closely related to formal language theory. In this context, automata are used as finite representations of formal languages that may be infinite. Automata are often classified by the class of formal languages they can recognize, as in the Chomsky hierarchy, which describes a nesting relationship between major classes of automata.
The forerunner of this book appeared under the title Formal Languages and Their Relation to Automata in 1968. Forming a basis both for the creation of courses on the topic, as well as for further research, that book shaped the field of automata theory for over a decade, cf. (Hopcroft 1989).
Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science, under discrete mathematics (a section of mathematics and also of computer science). Automata comes from the Greek word αὐτόματα meaning "self-acting".
These abstract machines are called automata. Automata comes from the Greek word (Αυτόματα) which means that something is doing something by itself. Automata theory is also closely related to formal language theory, [5] as the automata are often classified by the class of formal languages they are able to recognize. An automaton can be a ...
Therefore, formal language theory is a major application area of computability theory and complexity theory. Formal languages may be classified in the Chomsky hierarchy based on the expressive power of their generative grammar as well as the complexity of their recognizing automaton .
Seymour Ginsburg (December 12, 1927 – December 5, 2004) was an American pioneer of automata theory, formal language theory, and database theory, in particular; and computer science, in general. His work was influential in distinguishing theoretical Computer Science from the disciplines of Mathematics and Electrical Engineering.
Mapping [note 2] each equivalence E to the corresponding quotient automaton language L(A a,b,c,d / E) obtains the partially ordered set shown in the picture. Each node's language is denoted by a regular expression. The language may be recognized by quotient automata w.r.t. different equivalence relations, all of which are shown below the node.
In computer science, in particular in the field of formal language theory, an abstract family of languages is an abstract mathematical notion generalizing characteristics common to the regular languages, the context-free languages and the recursively enumerable languages, and other families of formal languages studied in the scientific literature.