Search results
Results from the WOW.Com Content Network
Water vapour from humid winter-air deposits directly into a solid, crystalline frost pattern on a window, without ever being liquid in the process. Deposition is the phase transition in which gas transforms into solid without passing through the liquid phase. Deposition is a thermodynamic process.
Water vapor can also be indirect evidence supporting the presence of extraterrestrial liquid water in the case of some planetary mass objects. Water vapor, which reacts to temperature changes, is referred to as a 'feedback', because it amplifies the effect of forces that initially cause the warming. Therefore, it is a greenhouse gas. [2]
Familiar examples are the melting of ice or the boiling of water (the water does not instantly turn into vapor, but forms a turbulent mixture of liquid water and vapor bubbles). Yoseph Imry and Michael Wortis showed that quenched disorder can broaden a first-order transition. That is, the transformation is completed over a finite range of ...
As snowflakes and hail, ice is a common form of precipitation, and it may also be deposited directly by water vapor as frost. The transition from ice to water is melting and from ice directly to water vapor is sublimation. These processes plays a key role in Earth's water cycle and climate.
Water vapor eventually condenses into clouds. Precipitation falls in the form of rain or snow, transporting water from the atmosphere back over land and starting the cycle over again.
The water cycle is powered from the energy emitted by the sun. This energy heats water in the ocean and seas. Water evaporates as water vapor into the air. Some ice and snow sublimates directly into water vapor. Evapotranspiration is water transpired from plants and evaporated from the soil. The water molecule H
"First, the hot water is making water vapor through evaporation. Second, the water breaks into smaller globs of water as it passes through the air. Both the evaporation and the smaller blobs mean ...
With radiation equilibrium temperatures of 40–50 K, [177] the objects in the Kuiper Belt are expected to have amorphous water ice. While water ice has been observed on several objects, [178] [179] the extreme faintness of these objects makes it difficult to determine the structure of the ices. The signatures of crystalline water ice was ...