enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    According to the change-of-variables formula for Lebesgue integration, [21] combined with the law of the unconscious statistician, [22] it follows that ⁡ [] = for any absolutely continuous random variable X. The above discussion of continuous random variables is thus a special case of the general Lebesgue theory, due to the fact that every ...

  3. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  4. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    An absolutely continuous random variable is a random variable whose probability distribution is absolutely continuous. There are many examples of absolutely continuous probability distributions: normal , uniform , chi-squared , and others .

  6. Continuous uniform distribution - Wikipedia

    en.wikipedia.org/wiki/Continuous_uniform...

    For a random variable following the continuous uniform distribution, the expected value is = +, and the variance is = (). For the special case a = − b , {\displaystyle a=-b,} the probability density function of the continuous uniform distribution is:

  7. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known.

  8. Law of the unconscious statistician - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_unconscious...

    In the simplest case, where the random variable X takes on countably many values (so that its distribution is discrete), the proof is particularly simple, and holds without modification if X is a discrete random vector or even a discrete random element. The case of a continuous random variable is more subtle, since the proof in generality ...

  9. Random variable - Wikipedia

    en.wikipedia.org/wiki/Random_variable

    A mixed random variable is a random variable whose cumulative distribution function is neither discrete nor everywhere-continuous. [10] It can be realized as a mixture of a discrete random variable and a continuous random variable; in which case the CDF will be the weighted average of the CDFs of the component variables. [10]