Search results
Results from the WOW.Com Content Network
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
Passive diffusion across a cell membrane.. Passive transport is a type of membrane transport that does not require energy to move substances across cell membranes. [1] [2] Instead of using cellular energy, like active transport, [3] passive transport relies on the second law of thermodynamics to drive the movement of substances across cell membranes.
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential .
Since Osmosis is a passive process, like facilitated diffusion and simple diffusion, it does not require the use of ATP. Osmosis is important in regulating the balance of water and salt within cells, thus it plays a critical role in maintaining homeostasis. [15]
One example of passive diffusion is the gas exchange that occurs between the oxygen in the blood and the carbon dioxide present in the lungs. [3] Facilitated diffusion is the movement of polar molecules down the concentration gradient with the assistance of membrane proteins. Since the molecules associated with facilitated diffusion are polar ...
A phospholipid bilayer is an example of a biological semipermeable membrane. It consists of two parallel, opposite-facing layers of uniformly arranged phospholipids. Each phospholipid is made of one phosphate head and two fatty acid tails. [3] The plasma membrane that surrounds all biological cells is an example of a phospholipid bilayer. [2]
Diffusion is of fundamental importance in many disciplines of physics, chemistry, and biology. Some example applications of diffusion: Sintering to produce solid materials (powder metallurgy, production of ceramics) Chemical reactor design; Catalyst design in chemical industry; Steel can be diffused (e.g., with carbon or nitrogen) to modify its ...
Multicomponent diffusion is diffusion in mixtures, and diffusiophoresis is the special case where we are interested in the movement of one species that is usually a colloidal particle, in a gradient of a much smaller species, such as dissolved salt such as sodium chloride in water. or a miscible liquid, such as ethanol in water.