Search results
Results from the WOW.Com Content Network
Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [2] and transforming it into one cohesive data set; a simple example is the expansion of abbreviations ("st, rd, etc." to "street, road, etcetera").
Data preprocessing can refer to manipulation, filtration or augmentation of data before it is analyzed, [1] and is often an important step in the data mining process. Data collection methods are often loosely controlled, resulting in out-of-range values, impossible data combinations, and missing values , amongst other issues.
Data preparation is the first step in data analytics projects and can include many discrete tasks such as loading data or data ingestion, data fusion, data cleaning, data augmentation, and data delivery. [2] The issues to be dealt with fall into two main categories:
Raw data is typically unorganized and much of it may not be useful for the end product. This step is important for easier computation and analysis in the later steps. Cleaning There are many different forms of cleaning data, for example one form of cleaning data is catching dates formatted in a different way and another form is removing ...
Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. [1] Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science ...
Extract, transform, load (ETL) is a three-phase computing process where data is extracted from an input source, transformed (including cleaning), and loaded into an output data container. The data can be collected from one or more sources and it can also be output to one or more destinations.
Feature scaling is a method used to normalize the range of independent variables or features of data. In data processing, it is also known as data normalization and is generally performed during the data preprocessing step.
Advisory actions typically allow data to be entered unchanged but sends a message to the source actor indicating those validation issues that were encountered. This is most suitable for non-interactive system, for systems where the change is not business critical, for cleansing steps of existing data and for verification steps of an entry process.