enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of viscosities - Wikipedia

    en.wikipedia.org/wiki/List_of_viscosities

    Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.

  3. Hemodynamics - Wikipedia

    en.wikipedia.org/wiki/Hemodynamics

    In the arterioles blood pressure is lower than in the major arteries. This is due to bifurcations, which cause a drop in pressure. The more bifurcations, the higher the total cross-sectional area, therefore the pressure across the surface drops. This is why [citation needed] the arterioles have the highest pressure-drop. The pressure drop of ...

  4. Hemorheology - Wikipedia

    en.wikipedia.org/wiki/Hemorheology

    Blood viscosity is a measure of the resistance of blood to flow. It can also be described as the thickness and stickiness of blood. This biophysical property makes it a critical determinant of friction against the vessel walls, the rate of venous return, the work required for the heart to pump blood, and how much oxygen is transported to tissues and organs.

  5. Blood pressure - Wikipedia

    en.wikipedia.org/wiki/Blood_pressure

    For people with high blood pressure, higher heart rate variability (HRV) is a risk factor for atrial fibrillation. [51] Both high systolic pressure and high pulse pressure (the numerical difference between systolic and diastolic pressures) are risk factors. [49]

  6. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    Under standard atmospheric conditions (25 °C and pressure of 1 bar), the dynamic viscosity of air is 18.5 μPa·s, roughly 50 times smaller than the viscosity of water at the same temperature. Except at very high pressure, the viscosity of air depends mostly on the temperature.

  7. Fåhræus–Lindqvist effect - Wikipedia

    en.wikipedia.org/wiki/Fåhræus–Lindqvist_effect

    The Fåhræus–Lindqvist effect (/ f ɑː ˈ r eɪ. ə s ˈ l ɪ n d k v ɪ s t /) or sigma effect [1] describes how the viscosity of blood changes with the diameter of the vessel it travels through. In particular there is a decrease in viscosity as the vessel diameter decreases, but only at small diameters of 10–300 micrometers (mainly ...

  8. Non-Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Non-Newtonian_fluid

    In physics and chemistry, a non-Newtonian fluid is a fluid that does not follow Newton's law of viscosity, that is, it has variable viscosity dependent on stress. In particular, the viscosity of non-Newtonian fluids can change when subjected to force. Ketchup, for example, becomes runnier when shaken and is thus a non-Newtonian fluid.

  9. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    However, the viscosity of blood will cause additional pressure drop along the direction of flow, which is proportional to length traveled [4] (as per Poiseuille's law). Both effects contribute to the actual pressure drop.