enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of viscosities - Wikipedia

    en.wikipedia.org/wiki/List_of_viscosities

    Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.

  3. Hemorheology - Wikipedia

    en.wikipedia.org/wiki/Hemorheology

    Blood viscosity is a measure of the resistance of blood to flow. It can also be described as the thickness and stickiness of blood. This biophysical property makes it a critical determinant of friction against the vessel walls, the rate of venous return, the work required for the heart to pump blood, and how much oxygen is transported to tissues and organs.

  4. Hemodynamics - Wikipedia

    en.wikipedia.org/wiki/Hemodynamics

    η(δ) = viscosity of blood in the wall plasma release-cell layering; r = radius of the blood vessel; δ = distance in the plasma release-cell layer; Blood resistance varies depending on blood viscosity and its plugged flow (or sheath flow since they are complementary across the vessel section) size as well, and on the size of the vessels.

  5. Hematocrit - Wikipedia

    en.wikipedia.org/wiki/Hematocrit

    Typically, a higher hematocrit level signifies the blood sample's ability to transport oxygen, [19] which has led to reports that an "optimal hematocrit level" may exist. Optimal hematocrit levels have been studied through combinations of assays on blood sample's hematocrit itself, viscosity, and hemoglobin level. [19]

  6. Erythrocyte deformability - Wikipedia

    en.wikipedia.org/wiki/Erythrocyte_deformability

    Erythrocyte deformability is an important determinant of blood viscosity, hence blood flow resistance in the vascular system. [3] It affects blood flow in large blood vessels, due to the increased frictional resistance between fluid laminae under laminar flow conditions.

  7. Fåhræus effect - Wikipedia

    en.wikipedia.org/wiki/Fåhræus_effect

    He applied colloid principles to describe the stability of the suspension and more relevant to modern circulatory psychology was the study of aggregation of streaming blood and the relation between blood cell distribution, its velocity and apparent viscosity. He concluded the following results: (a) In high flow rates in tubes of diameter (< 0.3 ...

  8. Erythrocyte sedimentation rate - Wikipedia

    en.wikipedia.org/wiki/Erythrocyte_sedimentation_rate

    An increased number of red blood cells (polycythemia) causes reduced ESR as blood viscosity increases. Hemoglobinopathy such as sickle-cell disease can have low ESR due to an improper shape of red blood cells that impairs stacking.

  9. Fåhræus–Lindqvist effect - Wikipedia

    en.wikipedia.org/wiki/Fåhræus–Lindqvist_effect

    The Fåhræus–Lindqvist effect (/ f ɑː ˈ r eɪ. ə s ˈ l ɪ n d k v ɪ s t /) or sigma effect [1] describes how the viscosity of blood changes with the diameter of the vessel it travels through. In particular there is a decrease in viscosity as the vessel diameter decreases, but only at small diameters of 10–300 micrometers (mainly ...