enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cohen's h - Wikipedia

    en.wikipedia.org/wiki/Cohen's_h

    Researchers have used Cohen's h as follows. Describe the differences in proportions using the rule of thumb criteria set out by Cohen. [1] Namely, h = 0.2 is a "small" difference, h = 0.5 is a "medium" difference, and h = 0.8 is a "large" difference. [2] [3] Only discuss differences that have h greater than some threshold value, such as 0.2. [4]

  3. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...

  4. Estimation statistics - Wikipedia

    en.wikipedia.org/wiki/Estimation_statistics

    The confidence interval summarizes a range of likely values of the underlying population effect. Proponents of estimation see reporting a P value as an unhelpful distraction from the important business of reporting an effect size with its confidence intervals, [7] and believe that estimation should replace significance testing for data analysis ...

  5. Pseudo-R-squared - Wikipedia

    en.wikipedia.org/wiki/Pseudo-R-squared

    The last value listed, labelled “r2CU” is the pseudo-r-squared by Nagelkerke and is the same as the pseudo-r-squared by Cragg and Uhler. Pseudo-R-squared values are used when the outcome variable is nominal or ordinal such that the coefficient of determination R 2 cannot be applied as a measure for goodness of fit and when a likelihood ...

  6. Talk:Effect size - Wikipedia

    en.wikipedia.org/wiki/Talk:Effect_size

    Hi all and especially Grant, Have you noticed that the current version of the article - the section on Cohen & r effect size interpretation - says that "Cohen gives the following guidelines for the social sciences: small effect size, r = 0.1 − 0.23; medium, r = 0.24 − 0.36; large, r = 0.37 or larger" (references: Cohen's 1988 book and 1992 ...

  7. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    For B = 10% one requires n = 100, for B = 5% one needs n = 400, for B = 3% the requirement approximates to n = 1000, while for B = 1% a sample size of n = 10000 is required. These numbers are quoted often in news reports of opinion polls and other sample surveys. However, the results reported may not be the exact value as numbers are preferably ...

  8. Probability of superiority - Wikipedia

    en.wikipedia.org/wiki/Probability_of_superiority

    In other words, the correlation is the difference between the common language effect size and its complement. For example, if the common language effect size is 60%, then the rank-biserial r equals 60% minus 40%, or r = 0.20. The Kerby formula is directional, with positive values indicating that the results support the hypothesis.

  9. Power (statistics) - Wikipedia

    en.wikipedia.org/wiki/Power_(statistics)

    According to this formula, the power increases with the values of the effect size and the sample size n, and reduces with increasing variability . In the trivial case of zero effect size, power is at a minimum ( infimum ) and equal to the significance level of the test α , {\displaystyle \alpha \,,} in this example 0.05.