Search results
Results from the WOW.Com Content Network
unstrict inequality signs (less-than or equals to sign and greater-than or equals to sign) 1670 (with the horizontal bar over the inequality sign, rather than below it) John Wallis: 1734 (with double horizontal bar below the inequality sign) Pierre Bouguer
1. Means "greater than or equal to". That is, whatever A and B are, A ≥ B is equivalent to A > B or A = B. 2. Between two groups, may mean that the second one is a subgroup of the first one. 1. Means "much less than" and "much greater than".
In mathematical writing, the greater-than sign is typically placed between two values being compared and signifies that the first number is greater than the second number. Examples of typical usage include 1.5 > 1 and 1 > −2. The less-than sign and greater-than sign always "point" to the smaller number.
These relations are known as strict inequalities, [1] meaning that a is strictly less than or strictly greater than b. Equality is excluded. In contrast to strict inequalities, there are two types of inequality relations that are not strict: The notation a ≤ b or a ⩽ b or a ≦ b means that a is less than or equal to b (or, equivalently, at ...
This observation is equivalent to the mathematical expression "3 + 2 = 5" (that is, "3 plus 2 is equal to 5"). Besides counting items, addition can also be defined and executed without referring to concrete objects , using abstractions called numbers instead, such as integers , real numbers and complex numbers .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1.
Today, a more standard phrasing of Archimedes' proposition is that the partial sums of the series 1 + 1 / 4 + 1 / 16 + ⋯ are: + + + + = +. This form can be proved by multiplying both sides by 1 − 1 / 4 and observing that all but the first and the last of the terms on the left-hand side of the equation cancel in pairs.