Search results
Results from the WOW.Com Content Network
Nuclear fusion–fission hybrid (hybrid nuclear power) is a proposed means of generating power by use of a combination of nuclear fusion and fission processes. The concept dates to the 1950s, and was briefly advocated by Hans Bethe during the 1970s, but largely remained unexplored until a revival of interest in 2009, due to the delays in the ...
The reaction rate density between species A and B, having number densities n A,B, is given by: = where k is the reaction rate constant of each single elementary binary reaction composing the nuclear fusion process: = here, σ(v) is the cross-section at relative velocity v, and averaging is performed over all velocities.
At the Sun's core temperature of 15.5 million K the PP process is dominant. The PP process and the CNO process are equal at around 20 MK. [1] Scheme of the proton–proton branch I reaction. The proton–proton chain, also commonly referred to as the p–p chain, is one of two known sets of nuclear fusion reactions by which stars convert ...
The first of these, the proton-proton (pp) reaction is the simpler, as well as the more common, of the two. Typically, there are two processes by which smaller stars create fusion.
The CNO cycle (for carbon–nitrogen–oxygen; sometimes called Bethe–Weizsäcker cycle after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker) is one of the two known sets of fusion reactions by which stars convert hydrogen to helium, the other being the proton–proton chain reaction (p–p cycle), which is more efficient at the Sun's ...
Nuclear fusion seeks to replicate the reaction that makes the sun and other stars shine, by fusing together two atoms to unleash huge amounts of energy. Often referred to as the holy grail of ...
Synthesis of these elements occurred through nuclear reactions involving the strong and weak interactions among nuclei, and called nuclear fusion (including both rapid and slow multiple neutron capture), and include also nuclear fission and radioactive decays such as beta decay. The stability of atomic nuclei of different sizes and composition ...
Nuclear fusion powers a star for most of its existence. Initially the energy is generated by the fusion of hydrogen atoms at the core of the main-sequence star. Later, as the preponderance of atoms at the core becomes helium , stars like the Sun begin to fuse hydrogen along a spherical shell surrounding the core.