enow.com Web Search

  1. Ad

    related to: reflection coefficient and vswr

Search results

  1. Results from the WOW.Com Content Network
  2. Reflection coefficient - Wikipedia

    en.wikipedia.org/wiki/Reflection_coefficient

    In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.

  3. Standing wave ratio - Wikipedia

    en.wikipedia.org/wiki/Standing_wave_ratio

    — A web application that draws the Standing Wave Diagram and calculates the SWR, input impedance, reflection coefficient and more "Reflection and VSWR". fourier-series.com. RF concepts. — A flash demonstration of transmission line reflection and SWR "VSWR". telestrian.co.uk.

  4. Scattering parameters - Wikipedia

    en.wikipedia.org/wiki/Scattering_parameters

    This is correct for reflection coefficients with a magnitude no greater than unity, which is usually the case. A reflection coefficient with a magnitude greater than unity, such as in a tunnel diode amplifier, will result in a negative value for this expression. VSWR, however, from its definition, is always positive.

  5. Slotted line - Wikipedia

    en.wikipedia.org/wiki/Slotted_line

    The impedance, Z, of the DUT can be calculated from the reflection coefficient by, = + where Z 0 is the characteristic impedance of the line. An alternative method is to plot the VSWR and distance to the node (in wavelengths) on a Smith chart. These quantities are directly measured by the slotted line.

  6. Signal reflection - Wikipedia

    en.wikipedia.org/wiki/Signal_reflection

    In radio frequency (RF) practice this is often measured in a dimensionless ratio known as voltage standing wave ratio (VSWR) with a VSWR bridge. The ratio of energy bounced back depends on the impedance mismatch. Mathematically, it is defined using the reflection coefficient. [2]

  7. Return loss - Wikipedia

    en.wikipedia.org/wiki/Return_loss

    Return loss is related to both standing wave ratio (SWR) and reflection coefficient (Γ). Increasing return loss corresponds to lower SWR. Return loss is a measure of how well devices or lines are matched. A match is good if the return loss is high. A high return loss is desirable and results in a lower insertion loss.

  8. Reflections of signals on conducting lines - Wikipedia

    en.wikipedia.org/wiki/Reflections_of_signals_on...

    For a lossy line the expression is only valid adjacent to the termination; VSWR asymptotically approaches unity with distance from the termination or discontinuity. VSWR and the positions of the nodes are parameters that can be directly measured with an instrument called a slotted line. This instrument makes use of the reflection phenomenon to ...

  9. SWR meter - Wikipedia

    en.wikipedia.org/wiki/SWR_meter

    A standing wave ratio meter, SWR meter, ISWR meter (current "I" SWR), or VSWR meter (voltage SWR) measures the standing wave ratio (SWR) in a transmission line. [ a ] The meter indirectly measures the degree of mismatch between a transmission line and its load (usually an antenna ).

  1. Ad

    related to: reflection coefficient and vswr