Search results
Results from the WOW.Com Content Network
Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). Like electric charge, it determines how quarks and gluons interact through the strong force; however, rather than there being only positive and negative charges, there are three "charges", commonly called red, green, and blue.
A quark, which will have a single color value, can form a bound system with an antiquark carrying the corresponding anticolor. The result of two attracting quarks will be color neutrality: a quark with color charge ξ plus an antiquark with color charge −ξ will result in a color charge of 0 (or "white" color) and the formation of a meson.
Due to the force between two color charges remaining constant as they are separated, the energy grows until a quark–antiquark pair is spontaneously produced, turning the initial hadron into a pair of hadrons instead of isolating a color charge. Although analytically unproven, color confinement is well established from lattice QCD calculations ...
Their respective antiparticles are the antiquarks, which are identical except that they carry the opposite electric charge (for example the up quark carries charge + 2 / 3 , while the up antiquark carries charge − 2 / 3 ), color charge, and baryon number.
Charm quark; Color charge; Cosmological constant; Cosmological constant problem; Dark matter; Electron; Electroweak interaction; ... Chart of particle classification ...
The pattern of weak isospin T 3, weak hypercharge Y W, and color charge of all known elementary particles, rotated by the weak mixing angle to show electric charge Q, roughly along the vertical. The neutral Higgs field (gray square) breaks the electroweak symmetry and interacts with other particles to give them mass.
Additionally, gluons are subject to the color charge phenomena. Quarks carry three types of color charge; antiquarks carry three types of anticolor. Gluons carry both color and anticolor. This gives nine possible combinations of color and anticolor in gluons. The following is a list of those combinations (and their schematic names):
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks that give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)" , or the Eightfold Way , the successful classification scheme organizing the large number of lighter hadrons that ...