Search results
Results from the WOW.Com Content Network
I is the 3 × 3 identity matrix (which is trivially involutory); R is the 3 × 3 identity matrix with a pair of interchanged rows; S is a signature matrix. Any block-diagonal matrices constructed from involutory matrices will also be involutory, as a consequence of the linear independence of the blocks.
Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...
Affine involutions can be categorized by the dimension of the affine space of fixed points; this corresponds to the number of values 1 on the diagonal of the similar matrix D (see above), i.e., the dimension of the eigenspace for eigenvalue 1. The affine involutions in 3D are: the identity; the oblique reflection in respect to a plane
The analog formula to the above generalization of Euler's formula for Pauli matrices, the group element in terms of spin matrices, is tractable, but less simple. [ 7 ] Also useful in the quantum mechanics of multiparticle systems, the general Pauli group G n is defined to consist of all n -fold tensor products of Pauli matrices.
In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...
An exchange matrix is the simplest anti-diagonal matrix. Any matrix A satisfying the condition AJ = JA is said to be centrosymmetric. Any matrix A satisfying the condition AJ = JA T is said to be persymmetric. Symmetric matrices A that satisfy the condition AJ = JA are called bisymmetric matrices. Bisymmetric matrices are both centrosymmetric ...
Any such matrix is its own inverse, hence is an involutory matrix. It is consequently a square root of the identity matrix. Note however that not all square roots of the identity are signature matrices. Noting that signature matrices are both symmetric and involutory, they are thus orthogonal.
This formula simplifies significantly when the upper right block matrix B is the zero matrix. This formulation is useful when the matrices A and D have relatively simple inverse formulas (or pseudo inverses in the case where the blocks are not all square. In this special case, the block matrix inversion formula stated in full generality above ...