Search results
Results from the WOW.Com Content Network
The color temperature scale describes only the color of light emitted by a light source, which may actually be at a different (and often much lower) temperature. [1] [2] Color temperature has applications in lighting, [3] photography, [4] videography, [5] publishing, [6] manufacturing, [7] astrophysics, [8] and other fields.
The even spacing of the isotherms on the locus implies that the mired scale is a better measure of perceptual color difference than the temperature scale. The range of isothermal color temperatures for both diagrams is from 1000 K (1000 MK −1) to 10 000 K (100 MK −1).
Before the advent of powerful personal computers, it was common to estimate the correlated color temperature by way of interpolation from look-up tables and charts. [18] The most famous such method is Robertson's, [ 19 ] who took advantage of the relatively even spacing of the mired scale (see above) to calculate the CCT T c using linear ...
Color temperatures and example sources Temperature Source 1700 K Match flame, low pressure sodium lamps (LPS/SOX) 1850 K Candle flame, sunset/sunrise: 2400 K Standard incandescent lamps: 2550 K Soft white incandescent lamps 2700 K "Soft white" compact fluorescent and LED lamps 3000 K Warm white compact fluorescent and LED lamps 3200 K
A list of standardized illuminants, their CIE chromaticity coordinates (x,y) of a perfectly reflecting (or transmitting) diffuser, and their correlated color temperatures (CCTs) are given below. The CIE chromaticity coordinates are given for both the 2 degree field of view (1931) and the 10 degree field of view (1964). [1]
The CRI is calculated by comparing the color rendering of the test source to that of a "perfect" source, which is a black body radiator for sources with correlated color temperatures under 5000 K, and a phase of daylight otherwise (e.g., D65). Chromatic adaptation should be performed so that like quantities are compared.
The Planckian locus on the MacAdam (u, v) chromaticity diagram. The normals are lines of equal correlated color temperature. The CIE 1960 color space ("CIE 1960 UCS", variously expanded Uniform Color Space, Uniform Color Scale, Uniform Chromaticity Scale, Uniform Chromaticity Space) is another name for the (u, v) chromaticity space devised by David MacAdam.
In astronomy, the color index is a simple numerical expression that determines the color of an object, which in the case of a star gives its temperature. The lower the color index, the more blue (or hotter) the object is. Conversely, the larger the color index, the more red (or cooler) the object is.