enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solenoid - Wikipedia

    en.wikipedia.org/wiki/Solenoid

    the inductance of a solenoid follows as =. A table of inductance for short solenoids of various diameter to length ratios has been calculated by Dellinger, Whittmore, and Ould. [18] This, and the inductance of more complicated shapes, can be derived from Maxwell's equations. For rigid air-core coils, inductance is a function of coil geometry ...

  3. Solenoid (engineering) - Wikipedia

    en.wikipedia.org/wiki/Solenoid_(engineering)

    The solenoid can be useful for positioning, stopping mid-stroke, or for low velocity actuation; especially in a closed loop control system. A uni-directional solenoid would actuate against an opposing force or a dual solenoid system would be self cycling. The proportional concept is more fully described in SAE publication 860759 (1986).

  4. Inductance - Wikipedia

    en.wikipedia.org/wiki/Inductance

    When this is combined with the definition of inductance =, it follows that the inductance of a solenoid is given by: =. Therefore, for air-core coils, inductance is a function of coil geometry and number of turns, and is independent of current.

  5. Henry (unit) - Wikipedia

    en.wikipedia.org/wiki/Henry_(unit)

    The henry (symbol: H) is the unit of electrical inductance in the International System of Units (SI). [1] If a current of 1 ampere flowing through a coil produces flux linkage of 1 weber turn, that coil has a self-inductance of 1 henry.‌ The unit is named after Joseph Henry (1797–1878), the American scientist who discovered electromagnetic induction independently of and at about the same ...

  6. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    A solenoid The longitudinal cross section of a solenoid with a constant electrical current running through it. The magnetic field lines are indicated, with their direction shown by arrows. The magnetic flux corresponds to the 'density of field lines'. The magnetic flux is thus densest in the middle of the solenoid, and weakest outside of it.

  7. Pulse-width modulation - Wikipedia

    en.wikipedia.org/wiki/Pulse-width_modulation

    (In the case of an electrical circuit, a capacitor to absorb energy stored in (often parasitic) supply side inductance.) High frequency PWM power control systems are easily realisable with semiconductor switches. As explained above, almost no power is dissipated by the switch in either on or off state.

  8. Switched reluctance motor - Wikipedia

    en.wikipedia.org/wiki/Switched_reluctance_motor

    Rather than using a mechanical commutator to switch the winding current as in traditional motors, the switched-reluctance motor uses an electronic position sensor to determine the angle of the rotor shaft and solid state electronics to switch the stator windings, which enables dynamic control of pulse timing and shaping.

  9. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    Alternating electric current flows through the solenoid on the left, producing a changing magnetic field. This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. The most widespread version of Faraday's law states: