enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gödel numbering - Wikipedia

    en.wikipedia.org/wiki/Gödel_numbering

    These sequences of natural numbers can again be represented by single natural numbers, facilitating their manipulation in formal theories of arithmetic. Since the publishing of Gödel's paper in 1931, the term "Gödel numbering" or "Gödel code" has been used to refer to more general assignments of natural numbers to mathematical objects.

  3. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    This is also known as the nth-term test, test for divergence, or the divergence test. Ratio test This is ... Then if b > 1 and K (a natural number) exist such that

  4. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    Many authors do not name this test or give it a shorter name. [2] When testing if a series converges or diverges, this test is often checked first due to its ease of use. In the case of p-adic analysis the term test is a necessary and sufficient condition for convergence due to the non-Archimedean ultrametric triangle inequality.

  5. Natural number - Wikipedia

    en.wikipedia.org/wiki/Natural_number

    The first ordinal number that is not a natural number is expressed as ω; this is also the ordinal number of the set of natural numbers itself. The least ordinal of cardinality ℵ 0 (that is, the initial ordinal of ℵ 0 ) is ω but many well-ordered sets with cardinal number ℵ 0 have an ordinal number greater than ω .

  6. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.

  7. Set-theoretic definition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_definition...

    In Zermelo–Fraenkel (ZF) set theory, the natural numbers are defined recursively by letting 0 = {} be the empty set and n + 1 (the successor function) = n ∪ {n} for each n. In this way n = {0, 1, …, n − 1} for each natural number n. This definition has the property that n is a set with n elements.

  8. Natural numbers object - Wikipedia

    en.wikipedia.org/wiki/Natural_numbers_object

    In Set, the category of sets, the standard natural numbers are an NNO. [6] A terminal object in Set is a singleton, and a function out of a singleton picks out a single element of a set. The natural numbers 𝐍 are an NNO where z is a function from a singleton to 𝐍 whose image is zero, and s is the successor function.

  9. Perfect number - Wikipedia

    en.wikipedia.org/wiki/Perfect_number

    Illustration of the perfect number status of the number 6. In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number.