Search results
Results from the WOW.Com Content Network
The OptimJ programming language is an extension of Java 5. As does Java, Optimj provides maps; but OptimJ also provides true associative arrays. Java arrays are indexed with non-negative integers; associative arrays are indexed with any type of key.
For unordered access as defined in the java.util.Map interface, the java.util.concurrent.ConcurrentHashMap implements java.util.concurrent.ConcurrentMap. [2] The mechanism is a hash access to a hash table with lists of entries, each entry holding a key, a value, the hash, and a next reference.
Maps are data structures that associate a key with an element. This lets the map be very flexible. If the key is the hash code of the element, the Map is essentially a Set. If it's just an increasing number, it becomes a list. Examples of Map implementations include java.util.HashMap, java.util.LinkedHashMap, and java.util.TreeMap.
A small phone book as a hash table. In computer science, a hash table is a data structure that implements an associative array, also called a dictionary or simply map; an associative array is an abstract data type that maps keys to values. [2]
This is the case for tree-based implementations, one representative being the <map> container of C++. [16] The order of enumeration is key-independent and is instead based on the order of insertion. This is the case for the "ordered dictionary" in .NET Framework, the LinkedHashMap of Java and Python. [17] [18] [19] The latter is more common.
The theoretical worst case is the probability that all keys map to a single slot. The practical worst case is the expected longest probe sequence (hash function + collision resolution method). This analysis considers uniform hashing, that is, any key will map to any particular slot with probability 1/m, a characteristic of universal hash functions.
Adding to such a list requires either elements of type Number, any subtype of Number or null (which is a member of every type). The mnemonic PECS (Producer Extends, Consumer Super) from the book Effective Java by Joshua Bloch gives an easy way to remember when to use wildcards (corresponding to covariance and contravariance) in Java. [12]
Map functions can be and often are defined in terms of a fold such as foldr, which means one can do a map-fold fusion: foldr f z . map g is equivalent to foldr (f . g) z . The implementation of map above on singly linked lists is not tail-recursive , so it may build up a lot of frames on the stack when called with a large list.