Search results
Results from the WOW.Com Content Network
A trigonometric number is a number that can be expressed as the sine or cosine of a rational multiple of π radians. [2] Since sin ( x ) = cos ( x − π / 2 ) , {\displaystyle \sin(x)=\cos(x-\pi /2),} the case of a sine can be omitted from this definition.
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
[1] [2] One reason for this is that they can greatly simplify differential equations that do not need to be answered with absolute precision. There are a number of ways to demonstrate the validity of the small-angle approximations. The most direct method is to truncate the Maclaurin series for each of the trigonometric functions.
Because rational numbers have degree 1, we must have n ≤ 2 or φ(n) = 2 and therefore the only possibilities are n = 1,2,3,4,6. Next, he proved a corresponding result for the sine using the trigonometric identity sin(θ) = cos(θ − π/2). [4] In 1956, Niven extended Lehmer's result to the other trigonometric functions. [2]
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
For tiny arcs, the chord is to the arc angle in degrees as π is to 3, or more precisely, the ratio can be made as close as desired to π / 3 ≈ 1.047 197 55 by making θ small enough. Thus, for the arc of 1 / 2 °, the chord length is slightly more than the arc angle in degrees. As the arc increases, the ratio of the chord to ...
The angle between the horizontal line and the shown diagonal is 1 / 2 (a + b). This is a geometric way to prove the particular tangent half-angle formula that says tan 1 / 2 (a + b) = (sin a + sin b) / (cos a + cos b). The formulae sin 1 / 2 (a + b) and cos 1 / 2 (a + b) are the ratios of the actual distances to ...
In the following definitions, the hypotenuse is the side opposite to the 90-degree angle in a right triangle; ... (haversin(θ) = 1 / 2 versin(θ) = sin 2 ...