Search results
Results from the WOW.Com Content Network
where rotational speed is in revolutions per minute (rpm, rev/min). Some people (e.g., American automotive engineers) use horsepower (mechanical) for power, foot-pounds (lbf⋅ft) for torque and rpm for rotational speed. This results in the formula changing to:
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness. The SI unit for torsion constant is m 4.
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is
Here, the function gives the mass density at each point (,,), is a vector perpendicular to the axis of rotation and extending from a point on the rotation axis to a point (,,) in the solid, and the integration is evaluated over the volume of the body . The moment of inertia of a flat surface is similar with the mass density being replaced by ...
is the torque produced divided by armature current. [10] It can be calculated from the motor velocity constant . = = = where is the armature current of the machine (SI unit: ampere).
An example is the calculation of the rotational kinetic energy of the Earth. As the Earth has a sidereal rotation period of 23.93 hours, it has an angular velocity of 7.29 × 10 −5 rad·s −1. [2] The Earth has a moment of inertia, I = 8.04 × 10 37 kg·m 2. [3] Therefore, it has a rotational kinetic energy of 2.14 × 10 29 J.
If a mechanical system has no losses, then the input power must equal the output power. This provides a simple formula for the mechanical advantage of the system. Let the input power to a device be a force F A acting on a point that moves with velocity v A and the output power be a force F B acts on a point that moves with velocity v B.