Search results
Results from the WOW.Com Content Network
The two have equal free energy; neither is more stable, so neither predominates compared to the other. A negative difference in free energy means that a conformer interconverts to a thermodynamically more stable conformation, thus the equilibrium constant will always be greater than 1.
The gauche effect is very sensitive to solvent effects, due to the large difference in polarity between the two conformers.For example, 2,3-dinitro-2,3-dimethylbutane, which in the solid state exists only in the gauche conformation, prefers the gauche conformer in benzene solution by a ratio of 79:21, but in carbon tetrachloride, it prefers the anti conformer by a ratio of 58:42. [9]
(Here M is a metal atom, and X and Y are two different types of ligands.) In the cis isomer, the two Y ligands are adjacent to each other at 90°, as is true for the two chlorine atoms shown in green in cis-[Co(NH 3) 4 Cl 2] +, at left. In the trans isomer shown at right, the two Cl atoms are on opposite sides of the central Co atom.
More complex molecules, such as butane, have more than one possible staggered conformation. The anti conformation of butane is approximately 0.9 kcal mol −1 (3.8 kJ mol −1) more stable than the gauche conformation. [1] Both of these staggered conformations are much more stable than the eclipsed conformations.
Cis-1,4-Di-tert-butylcyclohexane has an axial tert-butyl group in the chair conformation and conversion to the twist-boat conformation places both groups in more favorable equatorial positions. As a result, the twist-boat conformation is more stable by 0.47 kJ/mol (0.11 kcal/mol) at 125 K (−148 °C) as measured by NMR spectroscopy. [9]
The two enantiomers can be distinguished, for example, by whether the path turns clockwise or counterclockwise as seen from the hydrogen atom. In order to change one conformation to the other, at some point those four atoms would have to lie on the same plane – which would require severely straining or breaking their bonds to the carbon atom.
In the chair conformation, the reference plane is chosen such that the lowest-numbered atom (usually C-1) is exoplanar. In the skew conformation, the plane contains three adjacent atoms and one other with the atom with the lowest possible number exoplanar. [6] Atoms above the plane are written before the conformer label, as a superscript
Hyperconjugation can be used to rationalize a variety of chemical phenomena, including the anomeric effect, the gauche effect, the rotational barrier of ethane, the beta-silicon effect, the vibrational frequency of exocyclic carbonyl groups, and the relative stability of substituted carbocations and substituted carbon centred radicals, and the thermodynamic Zaitsev's rule for alkene stability.