Search results
Results from the WOW.Com Content Network
In statistics, polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modeled as an nth degree polynomial in x. Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y, denoted E(y |x).
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.
Polynomial interpolation also forms the basis for algorithms in numerical quadrature (Simpson's rule) and numerical ordinary differential equations (multigrid methods). In computer graphics, polynomials can be used to approximate complicated plane curves given a few specified points, for example the shapes of letters in typography.
The partial sum formed by the first n + 1 terms of a Taylor series is a polynomial of degree n that is called the n th Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally more accurate as n increases.
In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]
In the mathematical field of numerical analysis, Runge's phenomenon (German:) is a problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points.
This product is a monic polynomial of degree n. It may be shown that the maximum absolute value (maximum norm) of any such polynomial is bounded from below by 2 1−n. This bound is attained by the scaled Chebyshev polynomials 2 1−n T n, which are also monic. (Recall that |T n (x)| ≤ 1 for x ∈ [−1, 1]. [5])
In the case of a smooth function, the nth-order approximation is a polynomial of degree n, which is obtained by truncating the Taylor series to this degree. The formal usage of order of approximation corresponds to the omission of some terms of the series used in the expansion .