Search results
Results from the WOW.Com Content Network
Ernst Hairer, Syvert Paul Nørsett and Gerhard Wanner, Solving ordinary differential equations I: Nonstiff problems, second edition, Springer Verlag, Berlin, 1993. ISBN 3-540-56670-8. Ernst Hairer and Gerhard Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems, second edition, Springer Verlag, Berlin, 1996.
Most methods for numerically solving ODEs require only the evaluation of derivatives for chosen values of the variables, so systems like MATLAB include implementations of several methods all sharing the same calling sequence. Users can try different methods by simply changing the name of the function called.
The Newmark-beta method is a method of numerical integration used to solve certain differential equations.It is widely used in numerical evaluation of the dynamic response of structures and solids such as in finite element analysis to model dynamic systems.
In the last twenty years, the HAM has been applied to solve a growing number of nonlinear ordinary/partial differential equations in science, finance, and engineering. [8] [9] For example, multiple steady-state resonant waves in deep and finite water depth [10] were found with the wave resonance criterion of arbitrary number of traveling gravity waves; this agreed with Phillips' criterion for ...
Solves linear, quadratic, conic and convex nonlinear, continuous and integer optimization. OptimJ – Java-based modelling language; the free edition includes support for lp_solve, GLPK and LP or MPS file formats. PottersWheel – parameter estimation in ordinary differential equations (free MATLAB toolbox for academic use).
Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations. This list presents nonlinear ordinary differential equations that have been named, sorted by area of interest.
The name arises for two reasons. First, the method relies on computing the solution in small steps, and treating the linear and the nonlinear steps separately (see below). Second, it is necessary to Fourier transform back and forth because the linear step is made in the frequency domain while the nonlinear step is made in the time domain.
It provides a convenient command-line interface for solving linear and nonlinear problems numerically, and for performing other numerical experiments using a language that is mostly compatible with MATLAB. The 4.0 and newer releases of Octave include a GUI.