Search results
Results from the WOW.Com Content Network
Drug delivery to the brain is the process of passing therapeutically active molecules across the blood–brain barrier into the brain.This is a complex process that must take into account the complex anatomy of the brain as well as the restrictions imposed by the special junctions of the blood–brain barrier.
L-DOPA, a precursor of dopamine that crosses the blood–brain barrier, is used in the treatment of Parkinson's disease. For depressed patients where low activity of the neurotransmitter norepinephrine is implicated, there is only little evidence for benefit of neurotransmitter precursor administration.
Glutamate is a very major constituent of a wide variety of proteins; consequently it is one of the most abundant amino acids in the human body. [1] Glutamate is formally classified as a non-essential amino acid, because it can be synthesized (in sufficient quantities for health) from α-ketoglutaric acid, which is produced as part of the citric acid cycle by a series of reactions whose ...
The blood–brain barrier (BBB) is a highly selective semipermeable border of endothelial cells that regulates the transfer of solutes and chemicals between the circulatory system and the central nervous system, thus protecting the brain from harmful or unwanted substances in the blood. [1]
Areas of the brain generally do not become infarcted until blood flow to the region drops below 10 to 12 mL/100 g/min. [4] At this point, glutamate release becomes unregulated, ion pumps are inhibited and adenosine triphosphate (ATP) synthesis also stops which ultimately leads to the disruption of intracellular processes and neuronal death. [4]
The key cellular components of the neuroimmune system are glial cells, including astrocytes, microglia, and oligodendrocytes. [1] [2] [5] Unlike other hematopoietic cells of the peripheral immune system, mast cells naturally occur in the brain where they mediate interactions between gut microbes, the immune system, and the central nervous system as part of the microbiota–gut–brain axis.
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
The food entering the gastrointestinal tract triggers the release of these hormones, which act on the brain to produce satiety. The brain contains both CCK-A and CCK-B receptors. Glucostatic hypothesis: The activity of the satiety center in the ventromedial nuclei is probably governed by the glucose utilization in the neurons.