enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entrance length (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Entrance_length_(fluid...

    In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.

  3. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  4. Computational fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Computational_fluid_dynamics

    Assume that the flow is steady, two-dimensional, and fully developed (i.e., the velocity profile does not change along the streamwise direction). [45] Note that this widely-used fully-developed assumption can be inadequate in some instances, such as some compressible, microchannel flows, in which case it can be supplanted by a locally fully ...

  5. Boundary conditions in computational fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    In fully developed flow no changes occurs in flow direction, gradient of all variables except pressure are zero in flow direction The equations are solved for cells up to NI-1, outside the domain values of flow variables are determined by extrapolation from the interior by assuming zero gradients at the outlet plane

  6. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    For flow in a pipe of diameter D, experimental observations show that for "fully developed" flow, [n 2] laminar flow occurs when Re D < 2300 and turbulent flow occurs when Re D > 2900. [ 13 ] [ 14 ] At the lower end of this range, a continuous turbulent-flow will form, but only at a very long distance from the inlet of the pipe.

  7. Vortex lattice method - Wikipedia

    en.wikipedia.org/wiki/Vortex_lattice_method

    The following assumptions are made regarding the problem in the vortex lattice method: The flow field is incompressible, inviscid and irrotational. However, small-disturbance subsonic compressible flow can be modeled if the general 3D Prandtl-Glauert transformation is incorporated into the method. The lifting surfaces are thin.

  8. Boundary conditions in fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    The flow attains a fully developed state where no change occurs in the flow direction when the outlet is selected far away from the geometrical disturbances. In such region, an outlet could be outlined and the gradient of all variables could be equated to zero in the flow direction except pressure .

  9. Hardy Cross method - Wikipedia

    en.wikipedia.org/wiki/Hardy_Cross_method

    7. The change in flow is applied across the loops. For loop 1-2-3, the change in flow is negative so its absolute value is applied in the clockwise direction. For loop 2-3-4, the change in flow is positive so its absolute value is applied in the counter-clockwise direction. For pipe 2-3, which is in both loops, the changes in flow are cumulative.