Search results
Results from the WOW.Com Content Network
The coupling of an acetylide and tertiary alkyl halide is an example of a reaction that cannot be accomplished with alkali metal acetylides, which displace halides in an S N 2 fashion. The corresponding alkynylalanes are able to couple to tertiary halides via an S N 1-like mechanism. [4] (11)
The classic Finkelstein reaction entails the conversion of an alkyl chloride or an alkyl bromide to an alkyl iodide by treatment with a solution of sodium iodide in acetone. Sodium iodide is soluble in acetone while sodium chloride and sodium bromide are not; [ 3 ] therefore, the reaction is driven toward products by mass action due to the ...
In this method, the sodium or potassium salt of phthalimide is N-alkylated with a primary alkyl halide to give the corresponding N-alkylphthalimide. [8] [9] [10] Upon workup by acidic hydrolysis the primary amine is liberated as the amine salt. [11] Alternatively the workup may be via the Ing–Manske procedure, involving reaction with hydrazine.
Haloalkane or alkyl halides are the compounds which have the general formula "RX" where R is an alkyl or substituted alkyl group and X is a halogen (F, Cl, Br, I). Haloalkanes have been known for centuries. Chloroethane was produced in the 15th century. The systematic synthesis of such compounds developed in the 19th century in step with the ...
Traditionally, the alkylating agents are alkyl halides. Many alkylating agents can be used instead of alkyl halides. For example, enones and epoxides can be used in presence of protons. The reaction typically employs a strong Lewis acid, such as aluminium chloride as catalyst, to increase the electrophilicity of the alkylating agent. [6]
Traditionally, alkyl halides are substrates for dehydrohalogenations. The alkyl halide must be able to form an alkene, thus halides having no C–H bond on an adjacent carbon are not suitable substrates. Aryl halides are also unsuitable. Upon treatment with strong base, chlorobenzene dehydrohalogenates to give phenol via a benzyne intermediate.
Another proposed mechanism involves single electron transfer with the generation of radicals. In reactions of secondary and tertiary alkyllithium and alkyl halides, radical species were detected by EPR spectroscopy. [9] [6] The mechanistic studies of lithium–halogen exchange are complicated by the formation of aggregates of organolithium species.
Elimination reaction of cyclohexanol to cyclohexene with sulfuric acid and heat [1] An elimination reaction is a type of organic reaction in which two substituents are removed from a molecule in either a one- or two-step mechanism. [2] The one-step mechanism is known as the E2 reaction, and the two-step mechanism is known as the E1 reaction ...