Search results
Results from the WOW.Com Content Network
Expectation conditional maximization (ECM) replaces each M step with a sequence of conditional maximization (CM) steps in which each parameter θ i is maximized individually, conditionally on the other parameters remaining fixed. [34] Itself can be extended into the Expectation conditional maximization either (ECME) algorithm. [35]
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
In electrical engineering, statistical computing and bioinformatics, the Baum–Welch algorithm is a special case of the expectation–maximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step. The Baum–Welch ...
The expectation–maximization algorithm can be treated as a special case of the MM algorithm. [1] [2] However, in the EM algorithm conditional expectations are usually involved, while in the MM algorithm convexity and inequalities are the main focus, and it is easier to understand and apply in most cases. [3]
A classical approach to this problem is the expectation-maximization algorithm, which alternates computing expected values of the unobserved variables conditional on observed data, with maximizing the complete likelihood (or posterior) assuming that previously computed expected values are correct. Under mild regularity conditions, this process ...
The conditional expectation of rainfall for an otherwise unspecified day known to be (conditional on being) in the month of March, is the average of daily rainfall over all 310 days of the ten–year period that fall in March. Similarly, the conditional expectation of rainfall conditional on days dated March 2 is the average of the rainfall ...
Conditional expectation; Expectation (epistemic) Expectile – related to expectations in a way analogous to that in which quantiles are related to medians; Law of total expectation – the expected value of the conditional expected value of X given Y is the same as the expected value of X; Median – indicated by in a drawing above
Expectation (or mean), variance and covariance. Jensen's inequality; General moments about the mean; Correlated and uncorrelated random variables; Conditional expectation: law of total expectation, law of total variance; Fatou's lemma and the monotone and dominated convergence theorems; Markov's inequality and Chebyshev's inequality