Search results
Results from the WOW.Com Content Network
Radon transform. Maps f on the (x, y)-domain to Rf on the (α, s)-domain.. In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line.
In practice of tomographic image reconstruction, often a stabilized and discretized version of the inverse Radon transform is used, known as the filtered back projection algorithm. [ 2 ] With a sampled discrete system, the inverse Radon transform is
In the mathematical field of integral geometry, the Funk transform (also known as Minkowski–Funk transform, Funk–Radon transform or spherical Radon transform) is an integral transform defined by integrating a function on great circles of the sphere. It was introduced by Paul Funk in 1911, based on the work of Minkowski (1904).
Take a two-dimensional function f(r), project (e.g. using the Radon transform) it onto a (one-dimensional) line, and do a Fourier transform of that projection. Take that same function, but do a two-dimensional Fourier transform first, and then slice it through its origin, which is parallel to the projection line. In operator terms, if
Throughout the 1940s and 1950s he continued to work on the Radon transform, in particular its application to linear partial differential equations, convex geometry, and the mathematical theory of water waves. He also worked in numerical analysis and on ill-posed problems. His textbook on partial differential equations was highly influential and ...
(1)Results of measurement, i.e. a series of images obtained by transmitted light are expressed (modeled) as a function p (s,θ) obtained by performing radon transform to μ(x, y), and (2)μ(x, y) is restored by performing inverse radon transform to measurement results.
The Radon point of any four points in the plane is their geometric median, the point that minimizes the sum of distances to the other points. [5] [6] Radon's theorem forms a key step of a standard proof of Helly's theorem on intersections of convex sets; [7] this proof was the motivation for Radon's original discovery of Radon's theorem.
Santaló's formula is valid for all (). In this case it is equivalent to the following identity of measures: In this case it is equivalent to the following identity of measures: Φ ∗ d μ ( x , v , t ) = ν ( x ) , x d σ ( x , v ) d t , {\displaystyle \Phi ^{*}d\mu (x,v,t)=\langle \nu (x),x\rangle d\sigma (x,v)dt,}