enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]

  3. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The CBOW can be viewed as a ‘fill in the blank’ task, where the word embedding represents the way the word influences the relative probabilities of other words in the context window. Words which are semantically similar should influence these probabilities in similar ways, because semantically similar words should be used in similar contexts.

  4. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    In practice however, BERT's sentence embedding with the [CLS] token achieves poor performance, often worse than simply averaging non-contextual word embeddings. SBERT later achieved superior sentence embedding performance [8] by fine tuning BERT's [CLS] token embeddings through the usage of a siamese neural network architecture on the SNLI dataset.

  5. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    The bag-of-words model (BoW) is a model of text which uses a representation of text that is based on an unordered collection (a "bag") of words. It is used in natural language processing and information retrieval (IR). It disregards word order (and thus most of syntax or grammar) but captures multiplicity.

  6. Latent space - Wikipedia

    en.wikipedia.org/wiki/Latent_space

    Here are some commonly used embedding models: Word2Vec: [4] Word2Vec is a popular embedding model used in natural language processing (NLP). It learns word embeddings by training a neural network on a large corpus of text. Word2Vec captures semantic and syntactic relationships between words, allowing for meaningful computations like word analogies.

  7. Embedding - Wikipedia

    en.wikipedia.org/wiki/Embedding

    An embedding, or a smooth embedding, is defined to be an immersion that is an embedding in the topological sense mentioned above (i.e. homeomorphism onto its image). [ 4 ] In other words, the domain of an embedding is diffeomorphic to its image, and in particular the image of an embedding must be a submanifold .

  8. fastText - Wikipedia

    en.wikipedia.org/wiki/FastText

    fastText is a library for learning of word embeddings and text classification created by Facebook's AI Research (FAIR) lab. [3] [4] [5] [6] The model allows one to ...

  9. Bidirectional text - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_text

    The text within the scope of the embedding formatting characters is not independent of the surrounding text. Also, characters within an embedding can affect the ordering of characters outside. Unicode 6.3 recognized that directional embeddings usually have too strong an effect on their surroundings and are thus unnecessarily difficult to use.