enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    The simplest kind of an orbit is a fixed point, or an equilibrium. If a mechanical system is in a stable equilibrium state then a small push will result in a localized motion, for example, small oscillations as in the case of a pendulum. In a system with damping, a stable equilibrium state is moreover asymptotically stable. On the other hand ...

  3. Nyquist stability criterion - Wikipedia

    en.wikipedia.org/wiki/Nyquist_stability_criterion

    The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...

  4. Equilibrium point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_point...

    Stability diagram classifying Poincaré maps of linear autonomous system ′ =, as stable or unstable according to their features. Stability generally increases to the left of the diagram. [1] Some sink, source or node are equilibrium points.

  5. Routh–Hurwitz stability criterion - Wikipedia

    en.wikipedia.org/wiki/Routh–Hurwitz_stability...

    In the control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as ...

  6. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    Stability and natural response characteristics of a continuous-time LTI system (i.e., linear with matrices that are constant with respect to time) can be studied from the eigenvalues of the matrix . The stability of a time-invariant state-space model can be determined by looking at the system's transfer function in factored form.

  7. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [1] [2]In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is

  8. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    where is a finite matrix, is asymptotically stable (in fact, exponentially stable) if all real parts of the eigenvalues of are negative. This condition is equivalent to the following one: [ 12 ] A T M + M A {\displaystyle A^{\textsf {T}}M+MA}

  9. Stable polynomial - Wikipedia

    en.wikipedia.org/wiki/Stable_polynomial

    A linear system is BIBO stable if its characteristic polynomial is stable. The denominator is required to be Hurwitz stable if the system is in continuous-time and Schur stable if it is in discrete-time. In practice, stability is determined by applying any one of several stability criteria.