Search results
Results from the WOW.Com Content Network
Bio-FETs couple a transistor device with a bio-sensitive layer that can specifically detect bio-molecules such as nucleic acids and proteins. A Bio-FET system consists of a semiconducting field-effect transistor that acts as a transducer separated by an insulator layer (e.g. SiO 2) from the biological recognition element (e.g. receptors or probe molecules) which are selective to the target ...
These regions can be either p or n type, but they must both be of the same type, and of opposite type to the body region. The source and drain (unlike the body) are highly doped as signified by a "+" sign after the type of doping. If the MOSFET is an n-channel or nMOS FET, then the source and drain are n+ regions and the body is a p region.
These devices are off at zero gate–source voltage. NMOS can be turned on by pulling the gate voltage higher than the source voltage, PMOS can be turned on by pulling the gate voltage lower than the source voltage. In most circuits, this means pulling an enhancement-mode MOSFET's gate voltage towards its drain voltage turns it on.
MOSFET, showing gate (G), body (B), source (S), and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).. The MOSFET (metal–oxide–semiconductor field-effect transistor) [1] is a type of insulated-gate field-effect transistor (IGFET) that is fabricated by the controlled oxidation of a semiconductor, typically silicon.
Overdrive voltage, usually abbreviated as V OV, is typically referred to in the context of MOSFET transistors.The overdrive voltage is defined as the voltage between transistor gate and source (V GS) in excess of the threshold voltage (V TH) where V TH is defined as the minimum voltage required between gate and source to turn the transistor on (allow it to conduct electricity).
Power sources have curves passing through the red regions. Active vs passive: Devices which have I–V curves which are limited to the first and third quadrants of the I–V plane, passing through the origin, are passive components (loads), that consume electric power from the circuit. Examples are resistors and electric motors.
NXP 7030AL - N-channel TrenchMOS logic level FET IRF640 Power Mosfet die. The power MOSFET is the most widely used power semiconductor device in the world. [3] As of 2010, the power MOSFET accounts for 53% of the power transistor market, ahead of the insulated-gate bipolar transistor (27%), RF power amplifier (11%) and bipolar junction transistor (9%). [24]
LDMOS (laterally-diffused metal-oxide semiconductor) [1] is a planar double-diffused MOSFET (metal–oxide–semiconductor field-effect transistor) used in amplifiers, including microwave power amplifiers, RF power amplifiers and audio power amplifiers. These transistors are often fabricated on p/p + silicon epitaxial layers.