Search results
Results from the WOW.Com Content Network
For example, a glass breaking on the floor is an event; it occurs at a unique place and a unique time. [1] Strictly speaking, the notion of an event is an idealization, in the sense that it specifies a definite time and place, whereas any actual event is bound to have a finite extent, both in time and in space. [2] [3]
A cosmic event horizon is a real event horizon because it affects all kinds of signals, including gravitational waves, which travel at the speed of light. More specific horizon types include the related but distinct absolute and apparent horizons found around a black hole.
The book culminates in chapter 6, "The transition to the relativistic conception of simultaneity". Jammer indicates that Ernst Mach demythologized the absolute time of Newtonian physics. Naturally the mathematical notions preceded physical interpretation. For instance, conjugate diameters of a conjugate hyperbolas are related as space and time.
As the Schwarzschild radius is linearly related to mass, while the enclosed volume corresponds to the third power of the radius, small black holes are therefore much more dense than large ones. The volume enclosed in the event horizon of the most massive black holes has an average density lower than main sequence stars.
Within an apparent horizon, light does not move outward; this is in contrast with the event horizon. In a dynamical spacetime, there can be outgoing light rays exterior to an apparent horizon (but still interior to the event horizon). An apparent horizon is a local notion of the boundary of a black hole, whereas an event horizon is a global notion.
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.
Event horizon, a boundary in spacetime beyond which events cannot affect the observer, thus referring to a black hole's boundary and the boundary of an expanding universe; Apparent horizon, a surface defined in general relativity; Cauchy horizon, a surface found in the study of Cauchy problems; Cosmological horizon, a limit of observability
According to the Bekenstein bound, the entropy of a black hole is proportional to the number of Planck areas that it would take to cover the black hole's event horizon.. In physics, the Bekenstein bound (named after Jacob Bekenstein) is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of ...