Search results
Results from the WOW.Com Content Network
In Pascal's triangle, each number is the sum of the two numbers directly above it. In the th row of Pascal's triangle, the th entry is denoted (), pronounced "n choose k". For example, the topmost entry is () =. With this notation, the construction of the previous paragraph may be written as
In number theory, a pentatope number is a number in the fifth cell of any row of Pascal's triangle starting with the 5-term row 1 4 6 4 1, either from left to right or from right to left. It is named because it represents the number of 3-dimensional unit spheres which can be packed into a pentatope (a 4-dimensional tetrahedron ) of increasing ...
The fourth triangular number equals the third tetrahedral number as the nth k-simplex number equals the kth n-simplex number due to the symmetry of Pascal's triangle, and its diagonals being simplex numbers; similarly, the fifth triangular number (15) equals the third pentatope number, and so forth
a number represented as a discrete r-dimensional regular geometric pattern of r-dimensional balls such as a polygonal number (for r = 2) or a polyhedral number (for r = 3). a member of the subset of the sets above containing only triangular numbers, pyramidal numbers , and their analogs in other dimensions.
The third tetrahedral number equals the fourth triangular number as the nth k-simplex number equals the kth n-simplex number due to the symmetry of Pascal's triangle, and its diagonals being simplex numbers; similarly, the fifth tetrahedral number (35) equals the fourth pentatope number, and so forth
Singmaster's conjecture is a conjecture in combinatorial number theory, named after the British mathematician David Singmaster who proposed it in 1971. It says that there is a finite upper bound on the multiplicities of entries in Pascal's triangle (other than the number 1, which appears infinitely many times).
Pascal's pyramid's first five layers. Each face (orange grid) is Pascal's triangle. Arrows show derivation of two example terms. In mathematics, Pascal's pyramid is a three-dimensional arrangement of the trinomial numbers, which are the coefficients of the trinomial expansion and the trinomial distribution. [1]
The powers of two that divide the central binomial coefficients are given by Gould's sequence, whose nth element is the number of odd integers in row n of Pascal's triangle. Squaring the generating function gives 1 1 − 4 x = ( ∑ n = 0 ∞ ( 2 n n ) x n ) ( ∑ n = 0 ∞ ( 2 n n ) x n ) . {\displaystyle {\frac {1}{1-4x}}=\left(\sum _{n=0 ...