Search results
Results from the WOW.Com Content Network
The Game of Life, also known as Conway's Game of Life or simply Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. [1] It is a zero-player game, [2] [3] meaning that its evolution is determined by its initial state, requiring no further input. One interacts with the Game of Life by creating an initial ...
A sample autonomous pattern from Lenia. An animation showing the movement of a glider in Lenia. Lenia is a family of cellular automata created by Bert Wang-Chak Chan. [1] [2] [3] It is intended to be a continuous generalization of Conway's Game of Life, with continuous states, space and time.
LifeWiki's homepage. LifeWiki is a wiki dedicated to Conway's Game of Life. [1] [2] It hosts over 2000 articles on the subject [3] and a large collection of Life patterns stored in a format based on run-length encoding [4] that it uses to interoperate with other Life software such as Golly.
Cellular automaton games that are determined by initial conditions including Conway's Game of Life are examples of this. [4] [5] Progress Quest is another example, in the game the player sets up an artificial character, and afterwards the game plays itself with no further input from the player. [6]
Conway's Game of Life and fractals, as two examples, may also be considered mathematical puzzles even though the solver interacts with them only at the beginning by providing a set of initial conditions. After these conditions are set, the rules of the puzzle determine all subsequent changes and moves.
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
The glider is a pattern that travels across the board in Conway's Game of Life. It was first discovered by Richard K. Guy in 1969, while John Conway's group was attempting to track the evolution of the R-pentomino. Gliders are the smallest spaceships, and they travel diagonally at a speed of one cell every four generations, or /
R-pentomino to stability in 1103 generations. In Conway's Game of Life, one of the smallest methuselahs is the R-pentomino, [2] a pattern of five cells first considered by Conway himself, [3] that takes 1103 generations before stabilizing with 116 cells.