Search results
Results from the WOW.Com Content Network
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
The simplest between-group design occurs with two groups; one is generally regarded as the treatment group, which receives the ‘special’ treatment (that is, it is treated with some variable), and the control group, which receives no variable treatment and is used as a reference (prove that any deviation in results from the treatment group ...
The difference between the two sample means, each denoted by X i, which appears in the numerator for all the two-sample testing approaches discussed above, is ¯ ¯ = The sample standard deviations for the two samples are approximately 0.05 and 0.11, respectively. For such small samples, a test of equality between the two population variances ...
Set up two statistical hypotheses, H1 and H2, and decide about α, β, and sample size before the experiment, based on subjective cost-benefit considerations. These define a rejection region for each hypothesis. 2 Report the exact level of significance (e.g. p = 0.051 or p = 0.049). Do not refer to "accepting" or "rejecting" hypotheses.
Here the independent variable is the dose and the dependent variable is the frequency/intensity of symptoms. Effect of temperature on pigmentation: In measuring the amount of color removed from beetroot samples at different temperatures, temperature is the independent variable and amount of pigment removed is the dependent variable.
Repeated measures design is a research design that involves multiple measures of the same variable taken on the same or matched subjects either under different conditions or over two or more time periods. [1] For instance, repeated measurements are collected in a longitudinal study in which change over time is assessed.
Simple mediation model. The independent variable causes the mediator variable; the mediator variable causes the dependent variable. In statistics, a mediation model seeks to identify and explain the mechanism or process that underlies an observed relationship between an independent variable and a dependent variable via the inclusion of a third hypothetical variable, known as a mediator ...
In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.