Search results
Results from the WOW.Com Content Network
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
Where calculators have added functions (such as square root, or trigonometric functions), software algorithms are required to produce high precision results. Sometimes significant design effort is needed to fit all the desired functions in the limited memory space available in the calculator chip , with acceptable calculation time.
Logarithms: the inverses of exponential functions; useful to solve equations involving exponentials. Natural logarithm; Common logarithm; Binary logarithm; Power functions: raise a variable number to a fixed power; also known as Allometric functions; note: if the power is a rational number it is not strictly a transcendental function. Periodic ...
The square-free factorization of a polynomial p is a factorization = where each is either 1 or a polynomial without multiple roots, and two different do not have any common root. An efficient method to compute this factorization is Yun's algorithm .
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
Root-finding algorithms are used to solve nonlinear equations (they are so named since a root of a function is an argument for which the function yields zero). If the function is differentiable and the derivative is known, then Newton's method is a popular choice. [16] [17] Linearization is another technique for solving nonlinear equations.
Tonelli–Shanks cannot be used for composite moduli: finding square roots modulo composite numbers is a computational problem equivalent to integer factorization. [ 1 ] An equivalent, but slightly more redundant version of this algorithm was developed by Alberto Tonelli [ 2 ] [ 3 ] in 1891.