Search results
Results from the WOW.Com Content Network
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
Deflection (f) in engineering. In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load. It may be quantified in terms of an angle (angular displacement) or a distance (linear displacement).
The rate or spring constant of a spring is the change in the force it exerts, divided by the change in deflection of the spring. That is, it is the gradient of the force versus deflection curve. An extension or compression spring's rate is expressed in units of force divided by distance, for example or N/m or lbf/in.
where is the non-linear spring stiffness defined by the p–y curve, is the deflection of the spring, and is the force applied to the spring. The p–y curves vary depending on soil type .
Belleville spring stack in series Belleville spring stack in parallel. Multiple Belleville washers may be stacked to modify the spring constant (or spring rate) or the amount of deflection. Stacking in the same direction will add the spring constant in parallel, creating a stiffer joint (with the same deflection).
The ratios between the reaction forces (or moments) and the produced deflection are the coupling stiffnesses. The elasticity tensor is a generalization that describes all possible stretch and shear parameters. A single spring may intentionally be designed to have variable (non-linear) stiffness throughout its displacement.
Combining these two features with the length of the shaft, , one is able to calculate a shaft's angular deflection, , due to the applied torque, : = As shown, the larger the material's shear modulus and polar second moment of area (i.e. larger cross-sectional area), the greater resistance to torsional deflection.