Search results
Results from the WOW.Com Content Network
Today, over two thousand two hundred years later, Euclid's fifth postulate remains a postulate. Proclus (410–485) wrote a commentary on The Elements where he comments on attempted proofs to deduce the fifth postulate from the other four; in particular, he notes that Ptolemy had produced a false 'proof'. Proclus then goes on to give a false ...
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
Posidonius was one of the first to attempt to prove Euclid's fifth postulate of geometry. He suggested changing the definition of parallel straight lines to an equivalent statement that would allow him to prove the fifth postulate. From there, Euclidean geometry could be restructured, placing the fifth postulate among the theorems instead. [38]
The Elements (Ancient Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions.
A Proof of the Parallel Theory and a Critique of Metageometry claimed to have proved Euclid's fifth "parallel" postulate, by re-ordering the logical structure of Euclid's Elements. Callahan proved that for any point not on a given line, there exists a parallel line in the plane so determined and through the point that does not intersect the ...
The classical equivalence between Playfair's axiom and Euclid's fifth postulate collapses in the absence of triangle congruence. [18] This is shown by constructing a geometry that redefines angles in a way that respects Hilbert's axioms of incidence, order, and congruence, except for the Side-Angle-Side (SAS) congruence.
Since Euclid's postulate is equivalent to the statement that the sum of the internal angles of a triangle is 180°, he considered both the hypothesis that the angles add up to more or less than 180°. The first led to the conclusion that straight lines are finite, contradicting Euclid's second postulate. So Saccheri correctly rejected it.
This postulate states that "On a given finite straight line it is always possible to construct a triangle similar to a given triangle". This result was encompassed in a trend trying to deduce Euclid's fifth from the other four postulates which today is known to be impossible.