Search results
Results from the WOW.Com Content Network
Conversely, a strict partial order < on may be converted to a non-strict partial order by adjoining all relationships of that form; that is, := < is a non-strict partial order. Thus, if ≤ {\displaystyle \leq } is a non-strict partial order, then the corresponding strict partial order < is the irreflexive kernel given by a < b if a ≤ b and a ...
For example, a plan for baking a cake might start: go to the store; get eggs; get flour; get milk; pay for all goods; go to the kitchen; This is a partial plan because the order for finding eggs, flour and milk is not specified, the agent can wander around the store reactively accumulating all the items on its shopping list until the list is complete.
The disjoint union of two posets is another typical example of order construction, where the order is just the (disjoint) union of the original orders. Every partial order ≤ gives rise to a so-called strict order <, by defining a < b if a ≤ b and not b ≤ a. This transformation can be inverted by setting a ≤ b if a < b or a = b. The two ...
A strict total order on a set is a strict partial order on in which any two distinct elements are comparable. That is, a strict total order is a binary relation < {\displaystyle <} on some set X {\displaystyle X} , which satisfies the following for all a , b {\displaystyle a,b} and c {\displaystyle c} in X {\displaystyle X} :
The term complete partial order, abbreviated cpo, has several possible meanings depending on context. A partially ordered set is a directed-complete partial order (dcpo) if each of its directed subsets has a supremum. (A subset of a partial order is directed if it is non-empty and every pair
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
It is NP-complete to determine whether a partial order with multiple sources and sinks can be drawn as a crossing-free Hasse diagram. [8] However, finding a crossing-free Hasse diagram is fixed-parameter tractable when parametrized by the number of articulation points and triconnected components of the transitive reduction of the partial order. [9]
The usual numeric orderings on the integers or real numbers satisfy these properties; however, unlike the orderings on the numbers, a partial order may have two elements that are incomparable: neither x ≤ y nor y ≤ x holds. Another familiar example of a partial ordering is the inclusion ordering ⊆ on pairs of sets. [2]