enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Theory of relativity - Wikipedia

    en.wikipedia.org/wiki/Theory_of_relativity

    General relativity is a theory of gravitation developed by Einstein in the years 1907–1915. The development of general relativity began with the equivalence principle , under which the states of accelerated motion and being at rest in a gravitational field (for example, when standing on the surface of the Earth) are physically identical.

  3. Formulations of special relativity - Wikipedia

    en.wikipedia.org/wiki/Formulations_of_special...

    The difference between this and the spacetime interval = in Minkowski space is that = is invariant purely by the principle of relativity whereas = requires both postulates. The "principle of relativity" in spacetime is taken to mean invariance of laws under 4-dimensional transformations.

  4. Relativity: The Special and the General Theory - Wikipedia

    en.wikipedia.org/wiki/Relativity:_The_Special...

    The original 1920 English publication of the paper. Relativity: The Special and the General Theory (German: Über die spezielle und die allgemeine Relativitätstheorie) began as a short paper and was eventually published as a book written by Albert Einstein with the aim of explaining the theory of relativity.

  5. Postulates of special relativity - Wikipedia

    en.wikipedia.org/wiki/Postulates_of_special...

    1. First postulate (principle of relativity) The laws of physics take the same form in all inertial frames of reference.. 2. Second postulate (invariance of c) . As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.

  6. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:

  7. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c.

  8. Bell's spaceship paradox - Wikipedia

    en.wikipedia.org/wiki/Bell's_spaceship_paradox

    Above: In S the distance between the spaceships stays the same, while the string contracts. Below: In S′ the distance between the spaceships increases, while the string length stays the same. Bell's spaceship paradox is a thought experiment in special relativity.

  9. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    In his special theory of relativity, Albert Einstein showed that the distance ds between two spatial points is not constant, but depends on the motion of the observer. However, there is a measure of separation between two points in space-time — called "proper time" and denoted with the symbol dτ — that is invariant; in other words, it does ...