Search results
Results from the WOW.Com Content Network
In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. [1] Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.
In mathematics, metric may refer to one of two related, but distinct concepts: A function which measures distance between two points in a metric space A metric tensor , in differential geometry, which allows defining lengths of curves, angles, and distances in a manifold
Before and in addition to the SI, other metric systems include: the MKS system of units and the MKSA systems, which are the direct forerunners of the SI; the centimetre–gram–second (CGS) system and its subtypes, the CGS electrostatic (cgs-esu) system, the CGS electromagnetic (cgs-emu) system, and their still-popular blend, the Gaussian ...
In mathematics, a metric space is a set where a notion of distance (called a metric) between elements of the set is defined. Much of analysis happens in some metric space; the most commonly used are the real line, the complex plane, Euclidean space, other vector spaces, and the integers.
Metric units are units based on the metre, gram or second and decimal (power of ten) multiples or sub-multiples of these. According to Schadow and McDonald, [ 1 ] metric units, in general, are those units "defined 'in the spirit' of the metric system, that emerged in late 18th century France and was rapidly adopted by scientists and engineers.
"The metric system is for all people for all time." (Condorcet 1791) Four objects used in making measurements in everyday situations that have metric calibrations are shown: a tape measure calibrated in centimetres, a thermometer calibrated in degrees Celsius, a kilogram mass, and an electrical multimeter which measures volts, amps and ohms.
A metric space is a length metric space if the intrinsic metric agrees with the original metric of the space. If the space has the stronger property that there always exists a path that achieves the infimum of length (a geodesic ) then it is called a geodesic metric space or geodesic space .
historical definitions of the units and their derivatives used in old measurements; e.g., international foot vs. US survey foot. For some purposes, conversions from one system of units to another are needed to be exact, without increasing or decreasing the precision of the expressed quantity.