Search results
Results from the WOW.Com Content Network
In mathematical logic, the Brouwer–Heyting–Kolmogorov interpretation, or BHK interpretation, of intuitionistic logic was proposed by L. E. J. Brouwer and Arend Heyting, and independently by Andrey Kolmogorov. It is also sometimes called the realizability interpretation, because of the connection with the realizability theory of Stephen ...
Logical Intuition, or mathematical intuition or rational intuition, is a series of instinctive foresight, know-how, and savviness often associated with the ability to perceive logical or mathematical truth—and the ability to solve mathematical challenges efficiently. [1]
Intuitionistic logic is related by duality to a paraconsistent logic known as Brazilian, anti-intuitionistic or dual-intuitionistic logic. [14] The subsystem of intuitionistic logic with the FALSE (resp. NOT-2) axiom removed is known as minimal logic and some differences have been elaborated on above.
This principle was established by Brouwer in 1928 [1] using intuitionistic principles, and can also be proven using Church's thesis. The analogous property in classical analysis is the fact that every continuous function from the continuum to {0,1} is constant.
In proof theory, a discipline within mathematical logic, double-negation translation, sometimes called negative translation, is a general approach for embedding classical logic into intuitionistic logic. Typically it is done by translating formulas to formulas that are classically equivalent but intuitionistically inequivalent.
The fundamental distinguishing characteristic of intuitionism is its interpretation of what it means for a mathematical statement to be true. In Brouwer's original intuitionism, the truth of a mathematical statement is a subjective claim: a mathematical statement corresponds to a mental construction, and a mathematician can assert the truth of a statement only by verifying the validity of that ...
In proof theory and mathematical logic, sequent calculus is a family of formal systems sharing a certain style of inference and certain formal properties. The first sequent calculi systems, LK and LJ, were introduced in 1934/1935 by Gerhard Gentzen [1] as a tool for studying natural deduction in first-order logic (in classical and intuitionistic versions, respectively).
Heyting arithmetic can be characterized just like the first-order theory of Peano arithmetic, except that it uses the intuitionistic predicate calculus for inference. In particular, this means that the double-negation elimination principle, as well as the principle of the excluded middle P E M {\displaystyle {\mathrm {PEM} }} , do not hold.