enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.

  3. Higher-order singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Higher-order_singular...

    In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition. It may be regarded as one type of generalization of the matrix singular value decomposition. It has applications in computer vision, computer graphics, machine learning, scientific computing, and signal processing

  4. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    A real tensor in 3D (i.e., one with a 3x3 component matrix) has as many as six independent invariants, three being the invariants of its symmetric part and three characterizing the orientation of the axial vector of the skew-symmetric part relative to the principal directions of the symmetric part.

  5. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    where Q is an orthogonal matrix (its columns are orthogonal unit vectors meaning =) and R is an upper triangular matrix (also called right triangular matrix). If A is invertible , then the factorization is unique if we require the diagonal elements of R to be positive.

  6. Finite strain theory - Wikipedia

    en.wikipedia.org/wiki/Finite_strain_theory

    The deformation gradient , like any invertible second-order tensor, can be decomposed, using the polar decomposition theorem, into a product of two second-order tensors (Truesdell and Noll, 1965): an orthogonal tensor and a positive definite symmetric tensor, i.e., = = where the tensor is a proper orthogonal tensor, i.e., = and ...

  7. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .

  8. Orthogonalization - Wikipedia

    en.wikipedia.org/wiki/Orthogonalization

    In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...

  9. Lagrangian coherent structure - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_coherent_structure

    where the proper orthogonal tensor is the dynamic rotation tensor and the non-singular tensors , are the left dynamic stretch tensor and right dynamic stretch tensor, respectively. Just as the classic polar decomposition, the DPD is valid in any finite dimension.