enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    A scalar function that depends entirely on the principal invariants of a tensor is objective, i.e., independent of rotations of the coordinate system. This property is commonly used in formulating closed-form expressions for the strain energy density , or Helmholtz free energy , of a nonlinear material possessing isotropic symmetry.

  3. Cauchy stress tensor - Wikipedia

    en.wikipedia.org/wiki/Cauchy_stress_tensor

    As it is a second order tensor, the stress deviator tensor also has a set of invariants, which can be obtained using the same procedure used to calculate the invariants of the stress tensor. It can be shown that the principal directions of the stress deviator tensor s i j {\displaystyle s_{ij}} are the same as the principal directions of the ...

  4. Stress triaxiality - Wikipedia

    en.wikipedia.org/wiki/Stress_Triaxiality

    The + + denotes first invariant of Cauchy stress tensor, ,, denote principal values of Cauchy stress, = denotes mean stress, = (+ +) is second invariant of Cauchy stress deviator, ,, denote principal values of Cauchy stress deviator, denotes effective stress.

  5. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    For example, an element of the tensor product space V ⊗ W is a second-order "tensor" in this more general sense, [29] and an order-d tensor may likewise be defined as an element of a tensor product of d different vector spaces. [30] A type (n, m) tensor, in the sense defined previously, is also a tensor of order n + m in this more general sense.

  6. Willam–Warnke yield criterion - Wikipedia

    en.wikipedia.org/wiki/Willam–Warnke_yield...

    where is the first invariant of the stress tensor, is the second invariant of the deviatoric part of the stress tensor, is the yield stress in uniaxial compression, and is the Lode angle given by θ = 1 3 cos − 1 ⁡ ( 3 3 2 J 3 J 2 3 / 2 ) . {\displaystyle \theta ={\tfrac {1}{3}}\cos ^{-1}\left({\cfrac {3{\sqrt {3}}}{2}}~{\cfrac {J_{3}}{J_{2 ...

  7. Piola–Kirchhoff stress tensors - Wikipedia

    en.wikipedia.org/wiki/Piola–Kirchhoff_stress...

    This tensor, a one-point tensor, is symmetric. If the material rotates without a change in stress state (rigid rotation), the components of the second Piola–Kirchhoff stress tensor remain constant, irrespective of material orientation. The second Piola–Kirchhoff stress tensor is energy conjugate to the Green–Lagrange finite strain tensor.

  8. Second fundamental form - Wikipedia

    en.wikipedia.org/wiki/Second_fundamental_form

    The second fundamental form of a parametric surface S in R 3 was introduced and studied by Gauss.First suppose that the surface is the graph of a twice continuously differentiable function, z = f(x,y), and that the plane z = 0 is tangent to the surface at the origin.

  9. von Mises yield criterion - Wikipedia

    en.wikipedia.org/wiki/Von_Mises_yield_criterion

    In continuum mechanics, the maximum distortion energy criterion (also von Mises yield criterion [1]) states that yielding of a ductile material begins when the second invariant of deviatoric stress reaches a critical value. [2] It is a part of plasticity theory that mostly applies to ductile materials, such as some metals.