Search results
Results from the WOW.Com Content Network
When stated in terms of temperature differences, Newton's law (with several further simplifying assumptions, such as a low Biot number and a temperature-independent heat capacity) results in a simple differential equation expressing temperature-difference as a function of time. The solution to that equation describes an exponential decrease of ...
Thus, indirectly, thermal velocity is a measure of temperature. Technically speaking, it is a measure of the width of the peak in the Maxwell–Boltzmann particle velocity distribution. Note that in the strictest sense thermal velocity is not a velocity, since velocity usually describes a vector rather than simply a scalar speed.
This convective fluid can be either a liquid or a gas. For heat transfer from the outer surface of the body, the convection mechanism is dependent on the surface area of the body, the velocity of the air, and the temperature gradient between the surface of the skin and the ambient air. [44] The normal temperature of the body is approximately 37 ...
According to this relationship, metabolic rate is a function of an organism's body mass and body temperature. By this equation, large organisms have higher metabolic rates (in watts) than small organisms, and organisms at high body temperatures have higher metabolic rates than those that exist at low body temperatures.
Because of the greenhouse effect, the Earth's actual average surface temperature is about 288 K (15 °C; 59 °F), which is higher than the 255 K (−18 °C; −1 °F) effective temperature, and even higher than the 279 K (6 °C; 43 °F) temperature that a black body would have.
The temperature approaches a linear function because that is the stable solution of the equation: wherever temperature has a nonzero second spatial derivative, the time derivative is nonzero as well. The heat equation implies that peaks ( local maxima ) of u {\displaystyle u} will be gradually eroded down, while depressions ( local minima ...
Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics.. Historically, thermodynamic temperature was defined by Lord Kelvin in terms of a macroscopic relation between thermodynamic work and heat transfer as defined in thermodynamics, but the kelvin was redefined by international agreement in 2019 in terms of phenomena that are ...
In the linear case the flux and the force are said to be conjugate to each other. The relation between a thermodynamic force F and its conjugate thermodynamic flux J is called a linear constitutive relation, = (=). L(0) is called a linear transport coefficient. In the case of multiple forces and fluxes acting simultaneously, the fluxes and ...