Search results
Results from the WOW.Com Content Network
When one substance dissolves into another, a solution is formed. A solution is a homogeneous mixture consisting of a solute dissolved into a solvent. The solute is the substance that is being dissolved, while the solvent is the dissolving medium. Solutions can be formed with many different types and forms of solutes and solvents.
This arises from the fact that polar solvents stabilize the formation of the carbocation intermediate to a greater extent than the non-polar-solvent conditions. This is apparent in the ΔE a, ΔΔG ‡ activation. On the right is an S N 2 reaction coordinate diagram. Note the decreased ΔG ‡ activation for the non-polar-solvent reaction ...
Lipophobicity, also sometimes called lipophobia (from the Greek λιποφοβία from λίπος lipos "fat" and φόβος phobos "fear"), is a chemical property of chemical compounds which means "fat rejection", literally "fear of fat". Lipophobic compounds are those not soluble in lipids or other non-polar solvents. From the other point of ...
Lipophilicity (from Greek λίπος "fat" and φίλος "friendly") is the ability of a chemical compound to dissolve in fats, oils, lipids, and non-polar solvents such as hexane or toluene. Such compounds are called lipophilic (translated as "fat-loving" or "fat-liking" [1] [2]). Such non-polar solvents are themselves lipophilic, and the ...
Due to the polar nature of the water molecule itself, other polar molecules are generally able to dissolve in water. Most nonpolar molecules are water-insoluble (hydrophobic) at room temperature. Many nonpolar organic solvents, such as turpentine, are able to dissolve nonpolar substances.
Polar solvents can be used to dissolve inorganic or ionic compounds such as salts. The conductivity of a solution depends on the solvation of its ions. Nonpolar solvents cannot solvate ions, and ions will be found as ion pairs. Hydrogen bonding among solvent and solute molecules depends on the ability of each to accept H-bonds, donate H-bonds ...
The separating funnel relies on the concept of "like dissolves like", which describes the ability of polar solvents to dissolve polar solutes and non-polar solvents to dissolve non-polar solutes. When the separating funnel is agitated, each solute migrates to the solvent (also referred to as "phase") in which it is more soluble.
Another example is soap, which has a hydrophilic head and a hydrophobic tail, allowing it to dissolve in both water and oil. Hydrophilic and hydrophobic molecules are also known as polar molecules and nonpolar molecules, respectively. Some hydrophilic substances do not dissolve. This type of mixture is called a colloid.