enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of thermodynamic properties - Wikipedia

    en.wikipedia.org/wiki/List_of_thermodynamic...

    Systems do not contain work, but can perform work, and likewise, in formal thermodynamics, systems do not contain heat, but can transfer heat. Informally, however, a difference in the energy of a system that occurs solely because of a difference in its temperature is commonly called heat , and the energy that flows across a boundary as a result ...

  3. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The zeroth law is of importance in thermometry, because it implies the existence of temperature scales. In practice, C is a thermometer, and the zeroth law says that systems that are in thermodynamic equilibrium with each other have the same temperature. The law was actually the last of the laws to be formulated. First law of thermodynamics

  4. Gibbs–Duhem equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Duhem_equation

    This equation shows that in thermodynamics intensive properties are not independent but related, making it a mathematical statement of the state postulate. When pressure and temperature are variable, only of components have independent values for chemical potential and Gibbs' phase rule follows. The Gibbs−Duhem equation cannot be used for ...

  5. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    For quasi-static and reversible processes, the first law of thermodynamics is: d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where δQ is the heat supplied to the system and δW is the work done by the system.

  6. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.

  7. Bridgman's thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Bridgman's_thermodynamic...

    In thermodynamics, Bridgman's thermodynamic equations are a basic set of thermodynamic equations, derived using a method of generating multiple thermodynamic identities involving a number of thermodynamic quantities.

  8. Thermodynamic state - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_state

    In thermodynamics, a thermodynamic state of a system is its condition at a specific time; that is, fully identified by values of a suitable set of parameters known as state variables, state parameters or thermodynamic variables.

  9. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...