Search results
Results from the WOW.Com Content Network
To form the product of two 8-bit integers, for example, the digital device forms the sum and difference, looks both quantities up in a table of squares, takes the difference of the results, and divides by four by shifting two bits to the right.
For example, multiplication is granted a higher precedence than addition, and it has been this way since the introduction of modern algebraic notation. [ 2 ] [ 3 ] Thus, in the expression 1 + 2 × 3 , the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7 , and not (1 + 2) × 3 = 9 .
Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...
For example, multiplying the lengths (in meters or feet) of the two sides of a rectangle gives its area (in square meters or square feet). Such a product is the subject of dimensional analysis. The inverse operation of multiplication is division. For example, since 4 multiplied by 3 equals 12, 12 divided by 3 equals 4.
The Schönhage–Strassen algorithm is an asymptotically fast multiplication algorithm for large integers, published by Arnold Schönhage and Volker Strassen in 1971. [1] It works by recursively applying fast Fourier transform (FFT) over the integers modulo 2 n + 1 {\displaystyle 2^{n}+1} .
Magma contains asymptotically fast algorithms for all fundamental integer and polynomial operations, such as the Schönhage–Strassen algorithm for fast multiplication of integers and polynomials. Integer factorization algorithms include the Elliptic Curve Method , the Quadratic sieve and the Number field sieve .
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...
This is a consequence of the fact that, because gcd(R, N) = 1, multiplication by R is an isomorphism on the additive group Z/NZ. For example, (7 + 15) mod 17 = 5, which in Montgomery form becomes (3 + 4) mod 17 = 7. Multiplication in Montgomery form, however, is seemingly more complicated.