Search results
Results from the WOW.Com Content Network
Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample (excluding the effects on cell walls)". [1] Alternatively, for samples which scatter light, absorbance may be defined as "the negative logarithm of one minus absorptance, as measured on a uniform sample". [2]
Therefore, measurements at two wavelengths yields two equations in two unknowns and will suffice to determine the amount concentrations c 1 and c 2 as long as the molar attenuation coefficients of the two components, ε 1 and ε 2 are known at both wavelengths. This two system equation can be solved using Cramer's rule.
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
From equations and , we see that two dissimilar media will have the same refractive index, but different admittances, if the ratio of their permeabilities is the inverse of the ratio of their permittivities.
This should not be confused with "absorbance". Spectral hemispherical absorptance: A ν A λ — Spectral flux absorbed by a surface, divided by that received by that surface. This should not be confused with "spectral absorbance". Directional absorptance: A Ω — Radiance absorbed by a surface, divided by the radiance incident onto that surface.
The absorption coefficient is fundamentally the product of a quantity of absorbers per unit volume, [cm −3], times an efficiency of absorption (area/absorber, [cm 2]). Several sources [2] [12] [3] replace nσ λ with k λ r, where k λ is the absorption coefficient per unit density and r is the density of the gas.
They developed a scheme, subject to the limitations of a two-flux model, to calculate the "scatter corrected absorbance" for a sample. [27] The decadic absorbance of a scattering sample is defined as −log 10 (R+T) or −log 10 (1−A). For a non scattering sample, R = 0, and the expression becomes −log 10 T or log( 1 / T ), which is ...
The ratio of the absorbance at 260 and 280 nm (A 260/280) is used to assess the purity of nucleic acids. For pure DNA, A 260/280 is widely considered ~1.8 but has been argued to translate - due to numeric errors in the original Warburg paper - into a mix of 60% protein and 40% DNA. [6] The ratio for pure RNA A 260/280 is ~2.0. These ratios are ...