enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    The sum of these values is an upper bound because the soft constraints cannot assume a higher value. It is exact because the maximal values of soft constraints may derive from different evaluations: a soft constraint may be maximal for = while another constraint is maximal for =.

  3. Fritz John conditions - Wikipedia

    en.wikipedia.org/wiki/Fritz_John_conditions

    where ƒ is the function to be minimized, the inequality constraints and the equality constraints, and where, respectively, , and are the indices sets of inactive, active and equality constraints and is an optimal solution of , then there exists a non-zero vector = [,,, …,] such that:

  4. Ellipsoid method - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid_method

    Consider a family of convex optimization problems of the form: minimize f(x) s.t. x is in G, where f is a convex function and G is a convex set (a subset of an Euclidean space R n). Each problem p in the family is represented by a data-vector Data( p ), e.g., the real-valued coefficients in matrices and vectors representing the function f and ...

  5. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context is the marginal cost of the ...

  6. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints. [ 4 ] [ 5 ] Curve fitting can involve either interpolation , [ 6 ] [ 7 ] where an exact fit to the data is required, or smoothing , [ 8 ] [ 9 ] in which a "smooth ...

  7. Frank–Wolfe algorithm - Wikipedia

    en.wikipedia.org/wiki/Frank–Wolfe_algorithm

    A step of the Frank–Wolfe algorithm Initialization: Let , and let be any point in . Step 1. Direction-finding subproblem: Find solving Minimize () Subject to (Interpretation: Minimize the linear approximation of the problem given by the first-order Taylor approximation of around constrained to stay within .)

  8. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    If the objective function is quadratic and the constraints are linear, quadratic programming techniques are used. If the objective function is a ratio of a concave and a convex function (in the maximization case) and the constraints are convex, then the problem can be transformed to a convex optimization problem using fractional programming ...

  9. Barrier function - Wikipedia

    en.wikipedia.org/wiki/Barrier_function

    minimize f(x) subject to x ≤ b. where b is some constant. If one wishes to remove the inequality constraint, the problem can be reformulated as minimize f(x) + c(x), where c(x) = ∞ if x > b, and zero otherwise. This problem is equivalent to the first.

  1. Related searches minimize subject to constraints calculator excel example table of characteristics

    inequality constraintsconstrained optimization problems
    constrained optimization examples