Search results
Results from the WOW.Com Content Network
Applying the rules recursively to a source string of symbols will usually terminate in a final output string consisting only of terminal symbols. Consider a grammar defined by two rules. In this grammar, the symbol Б is a terminal symbol and Ψ is both a non-terminal symbol and the start symbol. The production rules for creating strings are as ...
where A, B, S ∈ N are non-terminal symbols, a ∈ Σ is a terminal symbol, and ε denotes the empty string, i.e. the string of length 0. S is called the start symbol. In a left-regular grammar, (also called left-linear grammar), all rules obey the forms A → a; A → Ba; A → ε
A context-sensitive grammar is a noncontracting grammar in which all rules are of the form αAβ → αγβ, where A is a nonterminal, and γ is a nonempty string of nonterminal and/or terminal symbols. However, some authors use the term context-sensitive grammar to refer to noncontracting grammars in general. [1]
Nonterminal symbols are blue and terminal symbols are red. In formal language theory, a context-free grammar ( CFG ) is a formal grammar whose production rules can be applied to a nonterminal symbol regardless of its context.
Unlike a semi-Thue system, which is wholly defined by these rules, a grammar further distinguishes between two kinds of symbols: nonterminal and terminal symbols; each left-hand side must contain at least one nonterminal symbol. It also distinguishes a special nonterminal symbol, called the start symbol.
where A, B, and C are nonterminal symbols, the letter a is a terminal symbol (a symbol that represents a constant value), S is the start symbol, and ε denotes the empty string. Also, neither B nor C may be the start symbol, and the third production rule can only appear if ε is in L(G), the language produced by the context-free grammar G.
Let us notate a formal grammar as = (,,,), with a set of nonterminal symbols, a set of terminal symbols, a set of production rules, and the start symbol.. A string () directly yields, or directly derives to, a string (), denoted as , if v can be obtained from u by an application of some production rule in P, that is, if = and =, where () is a production rule, and , is the unaffected left and ...
is the set of terminal symbols; is the set of productions; is the distinguished, or start, symbol; Then, given a string of nonterminal symbols and an attribute name , . is a synthesized attribute if all three of these conditions are met: